网站页面已加载完成

由于您当前的浏览器版本过低,存在安全隐患。建议您尽快更新,以便获取更好的体验。推荐使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

当前位置: 首页 · 学术交流 · 正文

学术交流

【学术报告】研究生“灵犀学术殿堂”第536期之夏志明教授报告会通知

发布时间:2020年04月20日 来源:研究生院 点击数:

全校师生:

我校定于2020年04月22日举办研究生灵犀学术殿堂——夏志明教授报告会,现将有关事项通知如下:

1.报告会简介

报告人:夏志明教授

时间:2020年04月22日(星期三)下午3:00(开始时间)

地点:腾讯会议,ID:561530041

报告题目:Deep PCA: A methodology of feature extraction and dimension reduction for high-order data

内容简介:Facing with rapidly-increasing demands for analyzing high-order data or multiway data, feature-extracting methods become imperative for analysis and processing. The traditional feature-extracting methods, however, either need to overly vectorize the data and smash the original structure hidden in data, such as PCA and PCA-like methods, which is unfavourable to the data recovery, or can not eliminate the redundant information very well, such as Tucker Decomposition (TD) and TD-like methods. To overcome these limitations, we propose a more flexible and more powerful tool, called the Deep Principal Components Analysis (Deep-PCA) in this paper. By segmenting a random tensor into equal-sized subarrays named \textit{sections} and maximizing variations caused by orthogonal projections of these \textit{sections}, the Deep-PCA finds principal components in a parsimonious and flexible way. In so doing, two new operations on tensors, the $S$-\textit{direction inner/outer product}, are introduced to formulate tensor projection and recovery. With different segmentation ways characterized by \textit{section depth} and \textit{direction}, the Deep-PCA can be implemented many times in different ways, which defines the sequential and global Deep-PCA respectively. These multiple Deep-PCA take the PCA and PCA-like, Tucker Decomposition and the TD-like as the special cases, which corresponds to the deepest section-depth and the shallowest section depth respectively. We propose an adaptive depth and direction selection algorithm for implementation of Deep-PCA. The Deep-PCA is then tested in terms of subspace recovery ability, compression ability and feature extraction performance when applied to a set of artificial data, surveillance videos and hyperspectral imaging data. All the tests support the flexibility, effectiveness and usefulness of Deep-PCA.

2.欢迎各学院师生前来听报告。报告会期间请关闭手机或将手机调至静音模式。

党委学生工作部

数学与统计学院

2020年4月20日


报告人简介

西北大学数学学院教授,博士生导师,西北大学现代统计研究中心副主任,主要致力于张量数据分析、大数据异质性结构推断、分布式统计推断与计算、生物统计学等数据科学理论与应用研究。在“Biometrika”、“Journal of machine learning research”,“Technometrics”、“Statistics in Medicine”、“Journal of Statistical Planning and Inference”、“Statistics”等国际统计与机器学习期刊以及“中国科学”、“应用概率统计”等国内期刊发表论文30余篇;主持国家自然科学基金项目3项,主持省部级项目3项,作为骨干成员获得“陕西省科学技术进步奖”二、三等奖共2项,“陕西省高校科学技术奖”一等奖共2项,“陕西省国防科技进步奖”一等奖1项;先后赴香港科技大学、佛罗里达大学等科研机构进行专业访问与学术交流。

Baidu
sogou