网站页面已加载完成

由于您当前的浏览器版本过低,存在安全隐患。建议您尽快更新,以便获取更好的体验。推荐使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

当前位置: 首页 · 学术交流 · 正文

学术交流

【学术报告】研究生灵犀学术殿堂第446期之Michel Versluis教授报告会通知

发布时间:2019年04月26日 来源:党委学生工作部 点击数:

全校师生:

我校定于2019年4月29日举办研究生灵犀学术殿堂——Michel Versluis教授报告会,现将有关事项通知如下:

1.报告会简介

报告人:Michel Versluis教授

时间:2019年4月29日(星期一)上午10:00

地点:友谊校区航空楼A706

主题:Bubbles and droplets for nanotechnology and nanomedicine(纳米技术和纳米医学的气泡和液滴)

内容简介:The acoustic excitation of bubbles and droplets has widespread use in medical technology and nanotechnology applications. These applications include bulk and surface acoustic waves for bubble and droplet production, as well as bubble and droplet actuation to perform local drug delivery or local and well-controlled surface cleaning. For example, the controlled jet breakup of droplets can be accelerated through the resonant acoustic excitation of instable modes on the jet to form monodisperse droplets at a uniform production rate. Beat frequencies can be exploited to form larger droplet constructs through well-controlled coalescence in flight to be used to efficiently generate extreme ultraviolet wavelengths for the next generation nanolithography technology. Acoustically driven bubbles can promote efficient mixing on the microscale through acoustic streaming and stable cavitation. Microbubbles and low-boiling point nanodroplets can also be decorated with a payload which carries great potential for their use as drug delivery agents in the context of personalized medical therapy. Key to all these emerging applications is a precise acoustic control of the interaction of ultrasound with the bubbles and droplets. The challenge here is the combined microscopic length scales and ultrashort time scales associated with the mechanisms controlling bubble and droplet formation and its activation processes, which we solve by high-resolution ultrafast microscopy, even down to the nanosecond. Together with theoretical modeling and numerical simulations these experiments assist in our in-depth fundamental understanding of bubble and droplet behavior, which then provides intriguing new prospects for innovative solutions in nanotechnology industry and in nanomedicine.

(气泡和液滴的声激发在医疗技术和纳米技术应用中广泛使用。这些应用包括用于气泡和液滴产生的表面声波,以及用于执行局部药物输送或局部良好控制的表面清洁气泡和液滴致动。例如,可以通过喷射器上的不稳定模式的共振声激发来加速液滴的受控喷射破裂,从而以均匀的产生速率形成单分散液滴。通过在飞行中聚结的良好控制,可利用节拍频率形成更大的液滴构造,以用于有效地产生用于下一代纳米光刻技术的紫外波长。声学驱动的气泡可以通过声流和稳定的空化促进微尺度上的有效混合。微泡和低沸点纳米液滴也可以用有效载荷装饰,其在个性化医学治疗的背景下具有作为药物递送剂使用的巨大潜力。所有这些新兴应用的关键是超声波与气泡和液滴相互作用的精确声学控制。这里的挑战是结合微观尺度和超短时间尺度与控制气泡和液滴形成及其激活过程的机制相关联,我们通过高分辨率超快速显微镜解决,甚至低至纳秒。结合理论建模和数值模拟,这些实验有助于我们对气泡和液滴行为的深入基础理解,从而为纳米技术行业和纳米医学领域的创新解决方案提供了有趣的新前景。)

2.欢迎各学院师生前来听报告。报告会期间请关闭手机或将手机调至静音模式。

党委学生工作部

航空学院

2019年4月26日

报告人简介

Andreas Michael Versluis博士是特文特大学的全职教授和美国声学学会的会员。 他的研究兴趣在于物理和医学声学领域,特别是对微泡和微滴在医学应用中的应用研究非常深入,包括成像和治疗,以及医学和微流体应用中气泡和液滴的物理和控制。他在知名期刊上发表了178篇论文。他的出版物总引用次数超过5800次(直到2019年1月),目前的h指数为41。他同时也是许多着名国际期刊的审稿人。

Baidu
sogou