网站页面已加载完成

由于您当前的浏览器版本过低,存在安全隐患。建议您尽快更新,以便获取更好的体验。推荐使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

当前位置: 首页 · 学术交流 · 正文

学术交流

【学术报告】研究生灵犀学术殿堂第191期之Richard Samworth报告会通知

发布时间:2017年07月03日 来源:党委研究生工作部 电子信息学院 点击数:

全校师生:

我校定于2017年7月5日举办研究生灵犀学术殿堂——Richard Samworth报告会,现将有关事项通知如下:

1.报告会简介

报告人:Richard Samworth 教授

时间:2017年7月5日(星期三) 下午14:00(开始时间)

地点: 长安校区89院之间报告厅

主题: High-dimensional Changepoint Estimation via Sparse Projection

内容简介: Changepoints are a very common feature of Big Data that arrive in the form of a data stream. We study high-dimensional time series in which, at certain time points, the mean structure changes in a sparse subset of the coordinates. The challenge is to borrow strength across the coordinates in order to detect smaller changes than could be observed in any individual component series. We propose a two-stage procedure called‘inspect’for estimation of the changepoints: first, we argue that a good projection direction can be obtained as the leading left singular vector of the matrix that solves a convex optimization problem derived from the CUSUM transformation of the time series. We then apply an existing univariate changepoint estimation algorithm to the projected series. Our theory provides strong guarantees on both the number of estimated changepoints and the rates of convergence of their locations, and our numerical studies validate its highly competitive empirical performance for a wide range of data generating mechanisms. Software implementing the methodology is available in the R package‘InspectChangepoint’.

2.欢迎各学院师生前来听报告。报告会期间请关闭手机或将手机调至静音模式。

党委研究生工作部

电子信息学院

2017年6月30日

报告人简介

Professor of Statistics in the Statistical Laboratory from the Faculty of Mathematics at the University of Cambridge.

Baidu
sogou